Learning neural trans-dimensional random field language models with noise-contrastive estimation

نویسندگان

  • Bin Wang
  • Zhijian Ou
چکیده

Trans-dimensional random field language models (TRF LMs) where sentences are modeled as a collection of random fields, have shown close performance with LSTM LMs in speech recognition and are computationally more efficient in inference. However, the training efficiency of neural TRF LMs is not satisfactory, which limits the scalability of TRF LMs on large training corpus. In this paper, several techniques on both model formulation and parameter estimation are proposed to improve the training efficiency and the performance of neural TRF LMs. First, TRFs are reformulated in the form of exponential tilting of a reference distribution. Second, noise-contrastive estimation (NCE) is introduced to jointly estimate the model parameters and normalization constants. Third, we extend the neural TRF LMs by marrying the deep convolutional neural network (CNN) and the bidirectional LSTM into the potential function to extract the deep hierarchical features and bidirectionally sequential features. Utilizing all the above techniques enables the successful and efficient training of neural TRF LMs on a 40x larger training set with only 1/3 training time and further reduces the WER with relative reduction of 4.7% on top of a strong LSTM LM baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Language Modelling with Noise-contrastive estimation

Neural language models do not scale well when the vocabulary is large. Noise contrastive estimation (NCE) is a sampling-based method that allows for fast learning with large vocabularies. Although NCE has shown promising performance in neural machine translation, its full potential has not been demonstrated in the language modelling literature. A sufficient investigation of the hyperparameters ...

متن کامل

Learning word embeddings efficiently with noise-contrastive estimation

Continuous-valued word embeddings learned by neural language models have recently been shown to capture semantic and syntactic information about words very well, setting performance records on several word similarity tasks. The best results are obtained by learning high-dimensional embeddings from very large quantities of data, which makes scalability of the training method a critical factor. W...

متن کامل

An experimental analysis of Noise-Contrastive Estimation: the noise distribution matters

Noise Contrastive Estimation (NCE) is a learning procedure that is regularly used to train neural language models, since it avoids the computational bottleneck caused by the output softmax. In this paper, we attempt to explain some of the weaknesses of this objective function, and to draw directions for further developments. Experiments on a small task show the issues raised by the unigram nois...

متن کامل

A Batch Noise Contrastive Estimation Approach for Training Large Vocabulary Language Models

Training large vocabulary Neural Network Language Models (NNLMs) is a difficult task due to the explicit requirement of the output layer normalization, which typically involves the evaluation of the full softmax function over the complete vocabulary. This paper proposes a Batch Noise Contrastive Estimation (BNCE) approach to alleviate this problem. This is achieved by reducing the vocabulary, a...

متن کامل

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models

We present a new estimation principle for parameterized statistical models. The idea is to perform nonlinear logistic regression to discriminate between the observed data and some artificially generated noise, using the model log-density function in the regression nonlinearity. We show that this leads to a consistent (convergent) estimator of the parameters, and analyze the asymptotic variance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.10739  شماره 

صفحات  -

تاریخ انتشار 2017